You are here

Broadcom Enables Next-Gen Smartwatches to Get Armed with Wi-Fi | 赛普拉斯半导体

Broadcom Enables Next-Gen Smartwatches to Get Armed with Wi-Fi

Consumers have come to expect peak performance from whatever connected device they are toting — a demand that’s trickling down to smartwatches.

The next generation of smartwatches — the most promising devices to emerge in the wearables category — are predicted to have similar functionality as their smartphone sidekicks.

Wi-Fi opens up a whole range of use cases that would enable consumers to get more functionality out of their smartwatches, with new possibilities for listening to music, tracking health and fitness data and even managing connected home devices from the tiny command center on their wrists.

Most smartwatches on the market today connect to other devices via low-energy Bluetooth, but not Wi-Fi. That’s by design, because battery life would suffer tremendously if wearables were constantly searching for a Wi-Fi connection.

And while Bluetooth is great for its economy of power consumption, it falls short in situations when a smartwatch and phone are out of range of each other.

One of the biggest complaints with early smartphones was that they had limited connectivity options and hit-or-miss battery life.  But bringing Wi-Fi to a wearable would up the ante for consumers.

Wearers wouldn’t need to be near their smartphones to do things like take calls, listen to their music libraries, sync with a fitness or other sensor-based tracking app or transfer photos and videos taken from a smartwatch — all in real-time, according to Sumit Kharbanda, senior product manager in the Broadband & Connectivity Group at Broadcom.


Click to expand infographic: Learn more about Wearable connected devices with technologies powered by Broadcom.

Last month, Broadcom quietly unveiled a new system-on-a-chip that could prove to be a game-changer for the next crop of smartwatches due out this year—and eventually, for glasses, biometric sensors and other high-end wearable devices.

The BCM43430 chip family has all the features you’d expect from a top-notch combo chip, including 2.4 GHz Wi-Fi, Bluetooth 4.1/Bluetooth Smart,  FM radio receiver, and a flexible, low-power design. It supports the latest wireless charging standard by the Alliance for Wireless Power, called Rezence, for on-the-go charging.

It also has a feature that enables Wi-Fi to exist on a low-power wearable platform—the secret lies in the chip’s ability to orchestrate a behind-the-scenes changeover from Bluetooth to Wi-Fi and back again.

“We believe that the best way to improve the user experience for wearables is to leverage both Wi-Fi and Bluetooth,” Kharbanda said. “So we’ve engineered a way to maintain the connection between the two devices.  When the user goes out of Bluetooth range, the chip would recognize that and be able to switch over to Wi-Fi before it loses connection.”

Wearables, such as smartwatches, that use Wi-Fi can do things that most any smartphone can do: they both benefit from longer-range, greater bandwidth and speed that Wi-Fi offers.

For example, a photo snapped on a smartwatch might take 15 to 20 seconds to send via Bluetooth. It would take only about a second over Wi-Fi.

With Broadcom’s SoC, a peer-to-peer connection via Wi-Fi would be initiated as soon as that shutter clicks. After the transfer is completed, it would switch back to Bluetooth.

There are also untapped applications for listening to music, such as enabling a wearable device to function as a remote control to browse and select songs, while streaming those tunes to a set of Bluetooth earphones.

Broadcom’s technology could empower music-toting consumers to leave their mobile phones behind while working out.  The smartwatch will detect if it’s out of Bluetooth range and then download the music library for on-the-go listening without missing a beat.

Same goes for managing smart home appliances (think: door locks, lighting controls, thermostats) and also for what Kharbanda calls the “golf cart” use case — in which a smartwatch-wearer walks away from the golf cart where his smartphone is located to go tee-off.

“When you walk out of the Bluetooth range, it triggers a changeover to Wi-Fi, but then switches back to Bluetooth when back into range,” he said. “All of this happens in the background but is transparent to the user.”

Blog: 

本网站上的所有内容和材料均“按原样”提供。赛普拉斯半导体公司及其各个供应商对这些材料用于任何用途的适用性不作陈述,并且对关于这些材料的所有担保和条件概不负责,包括但不限于有关适销性、针对特定用途之适用性、权利和不侵犯任何第三方知识产权的所有暗示担保和条件。赛普拉斯半导体公司不授予任何明示或暗示的许可(无论是以默许方式或是任何其他方式)。使用本网站上的信息可能需要第三方的许可,或赛普拉斯半导体公司的许可。

本网站上的内容可能包含或必须遵守关于使用的特定准则或限制。所有帖子和使用本网站上的内容都必须遵守本网站的条款与条件;使用这些内容的第三方必须同意遵守任何限制或准则,并遵守本网站的条款与条件。赛普拉斯半导体公司及其供应商保留随时对内容和材料、产品、计划和服务进行纠正、删除、修改、增强、改进或其他变更,或者移动或终止任何内容、产品、计划或服务的权利,恕不另行通知。